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a b s t r a c t

Causality extraction from natural language texts is a challenging open problem in artificial intelligence.
Existing methods utilize patterns, constraints, and machine learning techniques to extract causality,
heavily depending on domain knowledge and requiring considerable human effort and time for feature
engineering. In this paper, we formulate causality extraction as a sequence labeling problem based on
a novel causality tagging scheme. On this basis, we propose a neural causality extractor with the
BiLSTM-CRF model as the backbone, named SCITE (Self-attentive BiLSTM-CRF wIth Transferred
Embeddings), which can directly extract cause and effect without extracting candidate causal pairs
and identifying their relations separately. To address the problem of data insufficiency, we transfer con-
textual string embeddings, also known as Flair embeddings, which are trained on a large corpus in our
task. In addition, to improve the performance of causality extraction, we introduce a multihead self-
attention mechanism into SCITE to learn the dependencies between causal words. We evaluate our
method on a public dataset, and experimental results demonstrate that our method achieves significant
and consistent improvement compared to baselines.

� 2020 Elsevier B.V. All rights reserved.

1. Introduction

Natural language text contains considerably causal knowledge,
as shown in Fig. 1. In recent years, causality extraction has become
increasingly important for many natural language processing tasks,
such as information retrieval [1,2], event prediction [3,4], question
answering [5–7], generating future scenarios [8,9], decision pro-
cessing [10], medical text mining [11–13] and behavior prediction
[14]. However, due to the ambiguity and diversity of natural lan-
guage texts, causality extraction remains a hard NLP problem to
solve.

Traditional methods for causality extraction can be divided
into two categories: methods based on patterns [1,11,15,16] (Sec-
tion 5.1), and methods based on a combination of patterns and
machine learning techniques [5,17–19] (Section 5.2). The former
often has poor cross-domain applicability, fails to balance preci-
sion and recall and may require extensive domain knowledge to
solve problems in a particular area. The latter usually requires
considerable human effort and time on feature engineering,

relying heavily on the manual selection of textual features. Gen-
erally, it divides causality extraction into two subtasks, candidate
causal pairs extraction and relation classification (filtering non-
causal pairs). The results of candidate causal pairs extraction
may affect the performance of relation classification and generate
cascading errors.

[20] first proposed a tagging scheme that makes it possible for
models to extract entities and relations simultaneously. In their
tagging scheme, they apply a cartesian product of the entity men-
tion tags and the relation type tags, and then assign a unique tag
that encodes entity mentions and relation types for each word.
Inspired by their novel idea, we focus on a causal triplet that is
composed of two event entities and their relation. For instance,
the sentence in Fig. 1 contains a causal triplet: ‘‘{financial stress,
cause-effect, divorce}”. Thus, we can model the causal triplets
directly, rather than breaking causality extraction into two sub-
tasks. Based on the motivations, we formulate causality extraction
into a sequence tagging problem and propose a causality tagging
scheme (Section 2.1) to achieve direct causality extraction. How-
ever, the tagging scheme proposed by [20] cannot identify the
overlapping relations in a sentence; it only considers situations
where an entity belongs to one triplet: if an entity participates in
multiple relations, its tag should not be unique. To address this
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problem, we design a tag2triplet algorithm (Section 2.2) to handle
multiple causal triplets and embedded causal triplets in the same
sentence. Finally, we combine the causality tagging scheme with
a deep learning architecture (Section 2.3) to minimize feature
engineering while efficiently modeling causal relations in natural
language text.

We notice that some researchers have also proposed deep
learning technique-based methods for causality extraction in
recent years (Section 5.3). Although their works are commendable,
some works [21–24] are only a classification of causal relations
rather than an extraction of complete causal triplets, and others
[25,26] mainly focus on the identification of the linguistic expres-
sions for causality instead of the commonsense causality extrac-
tion in this paper.

By applying our causality tagging scheme, we use the model
based on BiLSTM-CRF [27] to extract causal triplets directly. How-
ever, we find that two obstacles hinder the further improvement of
the performance of the deep learning model.

First, it is difficult to train a superior deep learning model with-
out any prior knowledge in the case of data insufficiency in the
existing corpus [28–30]. To alleviate this problem, we incorporate
Flair embeddings [31] into our task, which use the internal states
of a character language model trained on a large corpus to create
word embeddings (Section 2.3.2). Experimental results show that
this contextual string embedding that has initiated a new technol-
ogy trend in NLP can drastically improve the performance of
causality extraction.

Second, in terms of their positions in the text, cause and effect
are sometimes far from each other, as Fig. 2 shows. The long-range
dependency in the causal triplet creates difficulty and ambiguity in
the deep learning model, but a set of logical rules based on depen-
dency trees can easily and accurately extract such triplets. To learn
this kind of long-range dependency between cause and effect, we
introduce the multihead self-attention mechanism [32] into our
model (Section 2.3.4). Unlike the LSTM-based model that recur-
sively processes each word, the self-attention mechanism can con-
duct direct connections between two arbitrary words in a sentence
and thus allows unimpeded information flow through the network
[33].

The contributions of this paper can be summarized as follows:

1. We design a novel causality tagging scheme to directly extract
causalities in texts and can easily transform the causality
extraction into a sequence labeling task and handle multiple
causal triplets and embedded causal triplets in the same
sentence.

2. Based on our causality tagging scheme, we propose SCITE (Self-
attentive BiLSTM-CRF wIth Transferred Embeddings), a neural-
based causality extractor with transferred contextual string
embeddings trained on a large corpus. To the best of our knowl-
edge, we are the first to transfer Flair embeddings into causality
extraction.

3. We introduce the multihead self-attention mechanism into
SCITE, which enables the model to capture long-range depen-
dencies between cause and effect.

4. Extensive experimental results (Section 3) and and further anal-
ysis (Section 4) show that our method achieves significant and
consistent improvement compared to other baselines. We
release the code and dataset to the research community for fur-
ther research 1.

2. Method

2.1. Causality tagging scheme

We use the ‘‘BIO” (begin, inside, other) and ‘‘C, E, Emb” (cause,
effect, embedded causality) signs to represent the position infor-
mation of the words and the semantic roles of the causal events,
respectively, where embedded causality [30] indicates that a cau-
sal event has different roles of causality in different triplets. Fig. 3
is an example of an embedded causality in a sentence. The example
sentence contains two causal triplets: ‘‘{the chronic inflamma-

tion, cause-effect, an increased acid production}” and ‘‘{Heli-

cobacter, cause-effect, the chronic inflammation}”, note that
‘‘the chronic inflammation is the cause in the first triplet and
the effect in the second triplet.

Fig. 4 shows an example of such causality sequence tagging.
Based on our causality tagging scheme, we label the causal event
entities ‘‘chronic inflammation”, ‘‘Helicobacter pylori infection”
and ‘‘increased acid production” separately with our special tags.
Specifically, tag ‘‘O” represents the‘‘other”, which means that the
corresponding word is irrelevant in any causality components.
Tag ‘‘B-C” represents the ‘‘cause begin”, tag ‘‘I-C” represents the
‘‘cause inside”, tag ‘‘B-E” represents the ‘‘effect begin”, tag ‘‘I-E”
represents the ‘‘effect inside”, tag ‘‘B-Emb” represents the
‘‘embedded causality begin”, and tag ‘‘I-Emb” represents the
‘‘embedded causality inside”. Thus, the total number of tags is
Nt ¼ 7.

2.2. From tag sequence to causal triplets

We design a tag2triplet algorithm for automatically obtaining
the final extracted triplets from the tag sequence in Fig. 4. To better
illustrate this algorithm, we define two types of causality: simple
causality and complex causality.

2.2.1. The case of simple causality

Simple causality can be classified into two types:

1. There is only one cause or one effect in the sentence, and there
is no embedded causality, that is, NC ¼ 1 or NE ¼ 1 and
NEmb ¼ 0, where NC ;NE, and NEmb respectively indicate the
number of tags ‘‘B-C”, ‘‘B-E”, and ‘‘B-Emb” in the sentence.
The example sentences in Fig. 1 and Fig. 2 are both of this type
of causality.

2. There are multiple causes and effects in the sentence, and there
is no embedded causality, i.e., NC > 1;NE > 1 and NEmb ¼ 0. In
addition, for each causal triplet in the sentence, there must be
at least one causal triplet that shares the same cause or effect.
The example sentence in Fig. 5 is this type of causality.

2.2.2. The case of complex causality

Complex causality has the following two types:

1. There is embedded causality in the sentence, that is,
NC > 0;NE > 0 and NEmb > 0. The example sentence in Fig. 3 is
this type of causality.

Fig. 1. A sentence expressing causal relations, in this case, ‘‘financial stress” is the
cause, ‘‘divorce” is the effect caused by financial stress.

1 https://github.com/Das-Boot/scite
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2. There are multiple causes and effects in the sentence, and there
is no embedded causality, i.e., NC > 1;NE > 1 and NEmb ¼ 0. In
addition, in all the causal triplets in the sentence, there must
be at least one causal triplet that does not share the same cause
or effect with any other triplets. The example sentence in Fig. 6
is this type of causality. Note that the distribution of causality in
the sentence of Fig. 5 is different from that in Fig. 6: each causal
triplet in the former is mixed together, and each causal triplet in
the latter is separated.

Fig. 2. The second causal triplet: ‘‘{[lesions], cause-effect, [distally predominant and a less severe proximal weakness]}” spans almost the entire sentence.

Fig. 3. Two causal triplets share the same causal event entity: ‘‘ the chronic inflammation” within a sentence.

Fig. 4. A standard annotation for the example sentence based on our causality tagging scheme.

Fig. 5. For any one of the four causal triplets in the above sentence, there is another
causal triplet sharing the same cause or effect.

Fig. 6. The causal triplet ‘‘{torrential rains, cause-effect, the disaster}” and ‘‘{the typhoon, cause-effect, the damage}” do not share the same cause or effect.
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2.2.3. Tag2triplet Algorithm

The tag2triplet algorithm is described in Algorithm 1. We elab-
orate on the tag2triplet algorithm by taking the sentence S and its
corresponding tag sequence Stag as an example in Fig. 4; the inter-
mediate result is shown in Table 1.

First, we count the out-degree and in-degree for causality and
find the index of causality in Stag . Specifically, the out-degree of
‘‘cause” is recorded as 1, the in-degree of ‘‘effect” is recorded as
1, and the out-degree and in-degree of ‘‘embedded causality” are
both recorded as 1. Then, we determine whether the S is simple
causality or complex causality according to the number and the
distribution of each causal tag: ‘‘C”, ‘‘E” and ‘‘Emb”. In
Stag ;NEmb ¼ 1, and thus, S is complex causality. Then, we apply a
Cartesian product of the causal entities composed of causal tags
to generate the candidates of the causal triplet. In Table 1, the can-
didate ‘‘(E0; E2)” represents the causal triplet ‘‘{the chronic inflam-

mation, cause-effect, an increased acid production}.
Next, combination returns i length subsequences of triplets

from the input candidates. After that, we determine whether the
out-degree and in-degree of each combination of candidates are
consistent with the original out-degree and in-degree of Stag . Then,
we determine whether the combination matches the rules accord-
ing to the coordinating conjunction in S, for example, if there is a

coordinating conjunction ‘‘and” between adjacent causes in the
same clause, then the two causes will form their respective causal
triplets with the same effect, as in the ‘‘bacteria” and ‘‘comedonal
debris in Fig. 5. Finally, we select the combination with the shortest
distance from the combinations that passed the checks as the
extracted causal triplets. Since only one combination ‘‘(E0; E2),
(E1; E0)” passed all the checks, we directly output it as the final
result.

2.3. SCITE

Fig. 7 gives the main structure of our model SCITE for causality
sequence labeling. We take the input sentence S ¼ xtf gnt¼1 and its
corresponding label sequence y ¼ yif gnt¼1 as an example to intro-
duce each component of SCITE from bottom to top as follows,
where n is the length of the S.

2.3.1. CNN for character representations

To capture task-specific subword features, we take the same
convolutional neural network [34] (CNN) architecture as [35],
using a one-layer CNN structure followed by a max-over-time
pooling operation [36] to learn character-level representations.
The process is depicted on the left side of Fig. 7.

Specifically, let ri 2 Rm be the m-dimensional character vector
corresponding to the i-th character in the word xt (the length of
xt is s). A convolution operation involves a filter w 2 Rlm, which
is applied to a window of l characters to produce a new feature.
For example, a feature ci is generated from a window of characters
ri:iþl�1

2 by

ci ¼ wTri:iþl�1 þ b; ð1Þ

where b is a bias term. This filter is applied to each possible window
of character vectors in the word r1:l; r2:hþ1; . . . ; rs�lþ1:sf g to produce a
feature map

ĉ ¼ c1; c2; . . . ; cs�lþ1½ �; ð2Þ

with ĉ 2 Rs�lþ1. Then, we take the maximum value ~c ¼ max ĉf g as
the feature corresponding to this particular filter. Thus, denoting
that the number of filters is f, the character representation ct for
word xt is given as:

ct ¼ ~c1; ~c2; . . . ; ~cf
� �

ð3Þ

2.3.2. Transferring contextualized representations learned from large

corpus

In recent years, deep learning has ushered in incredible
advances in natural language processing (NLP) tasks due to its

Table 1

The intermediate result of running tag2triplet when we input the sentence S and its
corresponding tag sequence Stag , and we highlight the correct combination of
candidates in bold.

S . . . thechronicinflammation½ �E0 . . . Helicobacterpyloriinfection½ �E1
. . . anincreasedacidproduction½ �E2 . . .

Stag B-Emb I-Emb I-Emb½ �E0 B-C I-C I-C½ �E1 B-E I-E I-E I-E½ �E2
Index 5;6;7½ �E0 17;18;19½ �E1 22;23;24;25½ �E2
Out-degree 1E0 1E1 0E2

In-degree 1E0 0E1 1E2

Candidates (E0; E2) (E1; E0) (E1; E2)
Combinations (E0; E2), (E1; E0) (E0; E2), (E1; E2) (E1; E0), (E1; E2)
Out-degree (1E0 ;1E1 ;0E2 ) (1E0 ;1E1 ;0E2 ) (1E0 ;0E1 ;0E2 )
In-degree (1E0 ; 0E1 ;1E2 ) (0E0 ; 0E1 ;1E2 ) (1E0 ;0E1 ;1E2 )

2 In general, let ri:iþj refer to the concatenation of character vectors ri; riþ1 , . . ., riþj
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powerful representation learning ability. However, in the case of
data insufficiency of the existing corpus, the data-hungry nature
of deep learning limits the performance of our neural-based model
in causality extraction. The recent development of contextualized
language representation models [37,38,31] trained on large cor-
pora shed light on the possibility of transfer learning.

In this paper, we use transfer learning to alleviate the problem
of data insufficiency. Specifically, we propose to transfer the Flair
embeddings [31], which were derived from a character-level lan-
guage model (CharLM) trained on a 1-billion word benchmark cor-
pus [39] to our task. This CharLM consists of a forward language
model (fLM) and a backward language model (bLM). Following

[31], we extract the output hidden state h
t
endþ1
���!

from the fLM after
the last character rtend of the word xt . Similarly, we obtain the out-

put hidden state h
t
start�1

 
from the bLM before the first character rtstart

of the word xt . Then, both output hidden states are concatenated to
form the final embedding f CharLMt of the word xt as follows:

f CharLMt ¼ h
t
endþ1
���!

;h
t
start�1

 � �

ð4Þ

Finally, we concatenate transferred Flair embeddings f CharLMt and the
character representations ct with the word embeddings et pre-
trained by [40] and feed them into a BiLSTM layer.

2.3.3. BiLSTM

Long short-term memory (LSTM) [41] is a particular recurrent
neural network (RNN) that overcomes the vanishing and exploding
gradient problems [42] of traditional RNN models. Through the
specifically designed gate structure of LSTM, the model can selec-
tively save context information. The basic unit of the LSTM archi-
tecture is a memory block, which includes a memory cell
(denoted as m) and three adaptive multiplication gates (i.e., an
input gate i, a forget gate f and an output gate o). Formally, the
computational operations to update an LSTM unit at time t are:

it ¼ r W i et; ct ; f
CharLM
t

� �

þ U iht�1 þ bi

� �

; ð5Þ
f t ¼ r W f et ; ct ; f

CharLM
t

� �

þ U fht�1 þ bf

� �

; ð6Þ
ot ¼ r Wo et ; ct ; f

CharLM
t

� �

þ Uoht�1 þ bo

� �

; ð7Þ
mt

�
¼ tanh Wm et;mt ; f

CharLM
t

� �

þ Umht�1 þ bm

� �

; ð8Þ
mt ¼ it �mt

�
þf t �mt�1; ð9Þ

ht ¼ ot � tanh mtð Þ; ð10Þ

where et; ct ; f
CharLM
t

� �

and ht represent the input vector and hidden
state, respectively at time t. r is the elementwise sigmoid function,
and � is the elementwise product. W i;W f ;Wo;Wm are the weight
matrices for the input vector, U i;U f ;Uo;Um are the weight matrices
for the hidden state, and bi;bf ;bo; bm denote the bias vectors.

However, LSTM only considers the information from the past,
ignoring future information. To efficiently use contextual informa-
tion, we can use bidirectional LSTM (BiLSTM). BiLSTM uses a for-
ward LSTM and a backward LSTM for each sequence to obtain

two separate hidden states: ht

!
, ht

 
, and then the final output at time

t is formed by concatenating these two hidden states:

ht ¼ ht

!
;ht

 � �

ð11Þ

Therefore, the final output of the BiLSTM layer for the input sen-

tence S can be represented by H ¼ htf gnt¼1, where H 2 Rn�d, and d

is the layer size of the BiLSTM layer.

2.3.4. Multihead self-attention

Self-attention is a particular case of the attention mechanism,
which only requires a single sequence to compute its representa-
tion, has been successfully applied to many NLP tasks [43,44,32]
and shows its superiority in capturing long-range dependency. In
SCITE, we adopt the multihead self-attention (MHSA) proposed
by [32] to learn the dependencies of causalities in the given sen-
tences. Fig. 8 depicts the architecture of the multihead attention
mechanism.

Specifically, given H as the output of the BiLSTM layer, the mul-
tihead attention mechanism first projects the matrix H h times

with different learned linear projections to matrices: HWQ
i ;HW

K
i

and HWV
i . where h is the number of heads and parameter matrices

WQ
i 2 Rd�dv ;WK

i 2 Rd�dv and WV
i 2 Rd�dv are projections for the ith

head. Then, the attention function is performed in parallel, yielding
n� dv-dimensional output values. Finally, all the matrices pro-
duced by parallel heads are concatenated, resulting in the final val-
ues M whose dimension is n� hdvð Þ, where both h and dv are
hyperparameters of the self-attention layer. The formulations can
be shown as follows:

M ¼ MultiHead H;H;Hð Þ ¼ Concat head1 . . . ;headhð Þ ð12Þ
where headi ¼ Attention HWQ

i ;HW
K
i ;HW

V
i

	 


ð13Þ

Fig. 7. The main structure of SCITE for causality sequence labeling. The left side of the figure shows a character CNN structure representing the word ‘‘financial”.
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Here, the attention function is the ‘‘scaled dot-product attention”,
which computes the attention scores as follows:

Attention HWQ
i ;HW

K
i ;HW

V
i

	 


¼ softmax
HWQ

i

	 


HWK
i

	 


ffiffiffi

d
p

0

@

1

A

� HWV
i

	 


ð14Þ

To fully integrate the information, we concatenate H and M

into matrix ~H and then project ~H with a linear projection to

matrix: ~HW . where weight matrix W 2 R dþhdvð Þk is the parameter
of the model to be learned in training and k is the number of dis-
tinct tags.

2.3.5. CRF

The conditional random field (CRF) [45] can obtain a globally
optimal chain of labels for a given sequence considering the corre-
lations between adjacent tags. In a sequence labeling task, there
are usually strong dependencies between the output labels. There-
fore, instead of only using RNN to model tagging decisions sepa-
rately, we adopt BiLSTM-CRF [27] as the backbone of SCIFl to
jointly decode labels for the whole sentence.

We use P 2 Rn�k as the matrix of scores output by the linear
layer, where Pij represents the score of the jth label of the ith word
within a sentence. For the sentence S ¼ xtf gnt¼1 and a path of tags
y ¼ yif gni¼1, CRF gives a real-valued score as follows:

score S; yð Þ ¼
Xn

i¼0
Ayi ;yiþ1 þ

Xn

i¼1
Pi;yi ; ð15Þ

where A is the transition matrix, and Ai;j denotes the score of a tran-
sition from tag i to tag j. y0 and yn are the special tags at the begin-
ning and the end of a sentence, so A is a square matrix of size kþ 2.
Therefore, the probability for the label sequence y given a sentence
S is:

p yjSð Þ ¼ escore S;yð Þ
X

y
�2YS

escore S;y
�ð Þ ; ð16Þ

We now maximize the log-likelihood of the correct tag sequence:

log p yjSð Þð Þ ¼ score S; yð Þ � log
X

y�2YS

escore S;y�ð Þ

 !

; ð17Þ

where YS represents all possible tag sequences for an input sentence
S. From the formulation above, we can obtain a valid output
sequence. When decoding, the sequence with the maximum score
is output by:

y� ¼ argmax
y�2YS

score S; y
�	 


ð18Þ

This can be computed using dynamic programming techniques, and
we choose the Viterbi algorithm [46] for this decoding.

3. Experiments

3.1. Experimental settings

3.1.1. Dataset

In the experiment, we evaluate a corpus obtained by extending
the annotations of the SemEval 2010 task 8 dataset. [28]. In the
original dataset, only one causal triplet in each sentence was anno-
tated. We extend the annotation with the causal triplets not con-
sidered by the SemEval annotators; for example, we annotate all
of the causal triplets in the sentence in Fig. 2 (more examples are
shown in Fig. 3, Fig. 5 and Fig. 6). Specifically, the corpus is com-
posed of 5,236 sentences, of which 1,270 sentences contain at least
one causal triplet. The training set consists of 4,450 sentences and
contains 1,570 causal triplets. There are 804 sentences in the test
set, including 296 causal triplets. Table 2 shows the statistics of
six types of causal tags for the dataset.

3.1.2. Evaluation

We use standard precision (P), recall (R) and F1-score (F) as
evaluation metrics, which can be calculated by the following
formulas:

P ¼ correct extracted causal triplets
extracted causal triplets

; ð19Þ

R ¼ correct extracted causal triplets
total causal triplets in D

; ð20Þ

F ¼2 P � R
P þ R

; ð21Þ

where D is the set of all the sentences in the dataset and a predicted
causal triplet is regarded as correct if and only if it precisely
matches a labeled causal triplet. To obtain comparable and repro-
ducible F1-scores, we follow the advice of [47] and conduct each
experiment 5 times and then report the average results and their
standard deviation, as shown in Table 3.

3.1.3. Hyperparameters

The model is implemented by using Keras3 version 2.2.4. The
300-D word embeddings pretrained by [40] are employed and kept
fixed during the training process. Character embeddings are ran-
domly initialized from a uniform distribution ranging in

�
ffiffiffiffiffiffi

3
dim

q

;þ
ffiffiffiffiffiffi

3
dim

qh i

, where we set dim ¼ 30. For the character-level

CNN layer, we use a one-layer CNN with 30 filters, and the
window size is 3. We use the Flair framework4 to compute the Flair

Fig. 8. The architecture of the multihead attention mechanism.

3 https://github.com/keras-team/keras.
4 https://github.com/zalandoresearch/flair.
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embeddings. The hidden size of LSTM is set to 256. The parameters h
(the number of heads) and dv (the size of each head) of the multi-
head self-attention mechanism are set to 3 and 8, respectively. We
use variational dropout [48] with a dropout rate of 0.5 to regularize
our network. To address the exploding gradient problem, we apply
gradient normalization [49] with a threshold of 5.0 to the SCITE.
The optimization method of the training process is Nadam [50] with
a learning rate of 0.001, and we apply a learning rate annealing
method such that if the training loss does not fall for more than
10 epochs, this method will halve the learning rate. We let the mini-
batch size be 16. In the experiments, we perform a grid search and
10-fold cross-validation on the training set to find the optimal
hyperparameters. On the test set, we select the optimal model
among all 200 epochs with the highest cross-validation F1-score.

3.1.4. Baselines

For a comprehensive comparison, we compare our method
against several classic causality extraction methods, which can
be divided into two categories: pipeline methods and sequence
tagging models based on our causality tagging scheme. The pipe-
line methods that we use as our baselines are as follows:

	 Rules + Bayesian: [17] performed pattern matching to extract
candidate cause-effect pairs based on a set of rules and then
used a Bayesian classifier and Laplace smoothing to filter non-
causal pairs.
	 CausalNet: [19] proposed causal strength (CS) to measure
the causal strength between any two pieces of short texts,
integrating necessity causality with sufficiency causality. For
comparison, we add the same cause-effect extraction module

as [17] to their method. We then calculate the CS score of the
candidate causal pair and compare it with the threshold s (s
is a tunable hyperparameter). If CS c; eð Þ > s, we conclude that
c; eð Þ is a causal relation; otherwise, c; eð Þ is an erroneously
extracted pair.

The sequence tagging structure used in this paper is divided into
CNN-based models and BiLSTM-based models. For the CNN-based
models [51], the baselines are as follows:

	 IDCNN-Softmax: This model uses a deep iterated dilated CNN
(IDCNN) architecture to aggregate context from the entire text,
which has better capacity than traditional CNN and faster com-
putational speed than LSTM, and then map the output of IDCNN
to predict each label independently through a softmax classifier.
	 IDCNN-CRF: This model uses the CRF classifier to maximize the
label probability of the complete sentence based on IDCNN.
Compared to the softmax classifier, the CRF classifier is more
appropriate for tasks with strong output label dependency.

The baselines for the BiLSTM-based models are listed as
follows:

	 BiLSTM-softmax [52]: The model consists of two parts: a
BiLSTM encoder and a softmax classifier.
	 BiLSTM-CRF [27]: A classic and popular choice for sequence
labeling tasks, which consists of a BiLSTM encoder and a CRF
classifier.
	 CLSTM-BiLSTM-CRF [53]: A hierarchical BiLSTM-CRF model
that uses character-based representations to implicitly capture
morphological features (e.g., prefixes and suffixes) through a
character LSTM encoder (CLSTM) and then concatenates the
character embeddings and pretrained word embeddings as the
input of BiLSTM-CRF.
	 CCNN-BiLSTM-CRF [35]: A similar hierarchical BiLSTM-CRF
model uses a character CNN encoder (CCNN) instead of a CLSTM
to learn the character-level embeddings.

To further analyze the performance of Flair embeddings trans-
ferred into our task, we combine the ELMo [37] and BERT [38],
two powerful contextualized word representations, into our task-
specific BiLSTM-CRF architecture as the experimental baselines:

	 ELMo-BiLSTM-CRF: An extension of BiLSTM-CRF in which [37]
concatenate pretrained static word embeddings with the ELMo
(Embeddings from Language Models) representations and take
them as the input of BiLSTM-CRF.
	 BERT-BiLSTM-CRF: A similar extension in which [38] added
pretrained word embeddings and the BERT (bidirectional enco-
der representations from transformers) representations and
used them as the input of BiLSTM-CRF.
	 Flair-BiLSTM-CRF: This model is used as a strong baseline in
our work, in which [31] pretrained word embeddings are con-
catenated with the Flair embeddings and fed it into the
BiLSTM-CRF model. Note that the models using Flair embed-
dings have achieved the current state-of-the-art results in a
range of sequence labeling tasks such as named entity recogni-
tion, chunking and part-of-speech tagging [31,54].
	 Flair + CLSTM-BiLSTM-CRF: A simple extension in which [31]
added task-trained character representations learned from a
CLSTM to Flair-BiLSTM-CRF.

3.2. Experimental results

The performance of different models on the causality extraction
is shown in Table 3. The first part is the pipeline methods (from

Table 3

Comparison in precision (P), recall (R), and F1-score (F) on the test set with baselines.

Model P R F

CausalNet 0.6211 0.5372 0.5761
Rules-Bayesian 0.6042 0.5878 0.5959
IDCNN-softmax 0.7455 
 0.0142 0.7074 
 0.0168 0.7258 
 0.0105
IDCNN-CRF 0.7442 
 0.0225 0.7142 
 0.0122 0.7288 
 0.0160
BiLSTM-softmax 0.7744 
 0.0183 0.7622 
 0.0114 0.7682 
 0.0138
CLSTM-BiLSTM-

CRF
0.8144 
 0.0284 0.7412 
 0.0073 0.7757 
 0.0107

CCNN-BiLSTM-
CRF

0.8069 
 0.0199 0.7520 
 0.0227 0.7780 
 0.0075

BiLSTM-CRF 0.7837 
 0.0061 0.7932 
 0.0087 0.7884 
 0.0072
BERT-BiLSTM-CRF 0.8277 
 0.0058 0.8209 
 0.0093 0.8243 
 0.0049
Flair + CLSTM-

BiLSTM-CRF
0.8403 
 0.0090 0.8284 
 0.0125 0.8343 
 0.0106

ELMo-BiLSTM-CRF 0.8361 
 0.0135 0.8399 
 0.0063 0.8379 
 0.0092
Flair-BiLSTM-CRF 0.8414 
 0.0079 0.8351 
 0.0141 0.8382 
 0.0092
SCITE

(Flair + CCNN-
BiLSTM-MHSA-
CRF)

0.8333 
 0.0042 0.8581 
 0.0021 0.8455 
 0.0028

SCITE (based on
general tagging
scheme)

0.7609 
 0.0170 0.7757 
 0.0136 0.7682 
 0.0145

Table 2

Statistics of different types of causal tags for the dataset.

Tag Type Training Set Test Set

B-C 1308 236
I-C 1421 229
B-E 1268 238
I-E 1230 230
B-Emb 55 9
I-Emb 55 16
Sum 5337 958
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row 2 to row 3). The second part (row 4 to row 5) is the CNN-based
sequence tagging method. The third part (row 6 to row 9) is the
BiLSTM-based sequence tagging method, and the fourth part
(row 10 to row 13) is the sequence tagging method using contex-
tualized word embeddings. Our SCITE model is shown in the final
part, where the first row is the result of SCITE based on the pro-
posed tagging scheme and the second row is the result of SCITE
based on the general tagging scheme.

Table 3 shows that SCITE outperforms all other models with an
F1-score of 0.8455 in the test set. This demonstrates the
effectiveness of our proposed method. Furthermore, it also shows
that the sequence tagging models are better than pipeline
methods.

By comparing the performance of the sequence tagging models
on the test set, we can see that the BiLSTM-based models are better
than the CNN-based models. The reason for the superior perfor-
mance of BiLSTM-based models may be that the LSTM layer can
more efficiently capture the global word context information and
learn semantic representations of causality. In addition, It also
shows that the performance of the model drastically improves
after feeding contextualized word representations into the
BiLSTM-CRF architecture. In particular, the Flair-BiLSTM-CRF
achieves the highest improvement of 6.32% over the BiLSTM-CRF
compared with the ELMo and BERT (increases of 6.28% and
4.55%, respectively), which indicates that the contextualized
character-level word embedding is more suitable for the task of
causality extraction.

Moreover, we also find that our proposed causality tagging
scheme yields a better result than the general tagging scheme
(0.8455 versus 0.7682) under the SCITE architecture, which
verifies the effectiveness of our proposed tagging scheme.
The general tagging scheme does not contain an ‘‘Emb” tag,
and thus, the model cannot correctly identify embedded
causality. Although the number of embedded causalities is rel-
atively small in the test set, embedded causality plays a cru-
cial role in causality extraction: one error in its identification
may affect the correct extraction of multiple triplets, as shown
in Fig. 3.

4. Analysis and discussion

4.1. Error analysis

In this paper, we focus on extracting all causal triplets from nat-
ural language texts, where the accurate identification of tags ‘‘C”
(cause), ‘‘E” (effect) and ‘‘Emb” (embedded causality), which repre-
sent the semantic roles of causal events, plays a vital role in our
task. To perform error analysis, we present a confusion matrix
for tags ‘‘C” (including ‘‘B-C” and ‘‘I-C”), ‘‘E” (including ‘‘B-E” and
‘‘I-E”), and ‘‘Emb” (including ‘‘B-Emb” and ‘‘I-Emb”) shown in
Fig. 9. We can see that most of the errors are confusion between
‘‘C”, ‘‘E” and ‘‘O”. This confusion may arise due to the problem of
insufficient annotated data. Compared with other baselines 5, our
model SCITE can better identify ‘‘C”, ‘‘E”, and ‘‘Emb”.

Furthermore, we compare the tagwise performance of our SCITE
model with baselines. The comparative results are summarized in
Table 4. First, we observe that our model achieves No. 1 in tags ‘‘C”
(including ‘‘B-C” and ‘‘I-C”), ‘‘E” (including ‘‘B-E” and ‘‘I-E”), and
‘‘Emb” (including ‘‘B-Emb” and ‘‘I-Emb”) in terms of F1-score. Sec-
ond, we also notice that the F1-scores are approximately 0.9 except
for tag ‘‘Emb” because of its low frequency (only 110 instances) in
the training set. In particular, it can be seen from the confusion

matrix in Fig. 9 that most ‘‘Emb” tags in the test set are misidenti-
fied as ‘‘C” or ‘‘E”, which leads to the low recall of ‘‘Emb”.

4.2. Ablation analysis

To investigate the effect of the different components in SCITE
(Flair + CCNN-BiLSTM-MHSA-CRF), we also report the results of
ablation experiments in Table 5. All parts positively contribute to
the performance of the SCITE model.

Specifically, we find that the transferred Flair embeddings pro-
vide the most significant improvement. This validates our assump-
tion that the lack of data containing causal triplets in the existing
corpus will affect the performance of a neural-based model in
causality extraction. Impressively, compared with SCITE without
Flair embeddings (SCITE-Flair), the transferred Flair embeddings
achieve an improvement of 33.28% in terms of the F1-score in
the case of extremely annotated data insufficiency (10% of training
data), as shown in Fig. 10. With the help of the transferred contex-
tualized representations, we can not only learn more semantic and
syntactic information from the text but also capture word meaning
in context to address the polysemous and context-dependent nat-
ure of words.

In addition, we also find that the multihead self-attention
(MHSA) mechanism can further improve performance, especially
when there are no Flair embeddings; the reason is discussed in
Section 4.3. Finally, we find that the task-specific character fea-
tures can also influence the performance of the model by a slight
increase when comparing the models with and without the charac-
ter representations learned from a CCNN.

4.3. Analysis of multihead self-attention

Different from other sequence tagging models, SCITE uses the
multihead self-attention mechanism to learn the dependencies
between cause and effect. To further analyze the effect of the
MHSA, we compute and visualize the F1-score in terms of causality
distance (the distance between cause and effect) for the three
groups of models:

	 Group 1: BiLSTM-CRF and BiLSTM-MHSA-CRF;
	 Group 2: Flair-BiLSTM-CRF and Flair-BiLSTM-MHSA-CRF;
	 Group 3: Flair + CCNN-BiLSTM-CRF and SCITE (Flair + CCNN-Bi
LSTM-MHSA-CRF)

As shown in Fig. 11, we find that the F1-scores decrease with
increasing causality distance in all three groups. This validates
our assumption that the long-range dependency between cause
and effect creates difficulty in causality extraction. In addition,
we also see that the performance of models with MHSA is better
than that of models without MHSA in arbitrary causality distance,
which indicates that the MHSA mechanism plays a crucial role in
efficiently enhancing the association between cause and effect. In
particular, MHSA significantly improves the performance in terms
of the causality distance greater than 10 compared with other
cases of shorter causality distance, as shown in Fig. 11a and
Fig. 11b.

4.4. Case study

In Table 6, we list two representative examples to show the
advantages and disadvantages of our proposed model. For each
case, we show the input sentence and causal triplets contained in
the sentence in the first and second row. The remaining rows show
the extracted causal triplets of different models (5).

Sentence 1 is the case of simple causality (see Section 2.2.1), in
which five causal triplets are waiting for models to extract. We

5 For the convenience of the display, we only show the results of SICFI, Flair-
BiLSTM-CRF (the superior of baselines) and BiLSTM-CRF (the classic sequence tagging
model).
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observed that neither the SCITE model nor the other two baseline
models could obtain all causal triplets correctly. It seems to be dif-
ficult for the models to learn that ‘‘superficial or underground
water” is a complete semantic unit and the phrase ‘‘as well as”
may play a key role in connecting two causal components. The rea-
son may be that the sequence tagging models based on our causal-
ity tagging scheme require slightly more training data to learn
these kinds of causality expression patterns.

Sentence 2 is the case of complex causality (see Section 2.2.2),
in which there is an embedded causality and therefore brings dif-
ficulty and ambiguity to the causality learning of the model. In this
example, only the SCITE can capture all the dependencies between

cause and effect and thus precisely extract all three causal triplets
when compared with other models.

5. Related works

In this section, we briefly introduce causality extraction tech-
niques proposed by other researchers, which fall into three cate-
gories: 1) approaches that employ pattern matching only, 2)
techniques based on the combination of patterns and machine
learning, and 3) methods based on deep learning techniques.

5.1. Pattern-Based Methods

Pattern-based methods extract causality through pattern
matching using semantic features, lexicon-syntactic features, and
self-constructed constraints. For example, [1] extracted causal
knowledge from the Wall Street Journal using linguistic clues and
pattern matching. In the domain of the medical abstract, [11] used
graphical patterns to extract causal knowledge from a medical
database. [15] extracted causal relations using the syntactic pat-
tern ‘‘NP1 causal-verb NP2” with causative verbs and then
employed semantic constraints to classify candidates as causal or
noncausal. [16] proposed a causal pair extraction method based
on part-of-speech, syntactic analysis, and causality templates. In
their work, causality templates were first extracted using causal
sentences on Wikipedia, and then they used these templates to
extract causal relations in other sentences.

These methods that rely solely on rules for pattern matching
often have poor cross-domain applicability and may require exten-
sive domain knowledge in solving problems in a particular area, as
well as formulating rules that consume significant amounts of time
and effort.

5.2. Methods based on the combination of patterns and machine

learning

Methods based on the combination of patterns and machine
learning techniques mainly treat this task in a pipeline manner.
They first extract candidate phrase (or entity, event) pairs that
may have causal relations according to templates or some clue

Table 4

Comparison of predicted tags concerning ‘‘C” (cause), ‘‘E” (effect) and ‘‘Emb” (embedded causality) in precision (P), recall (R), and F1-score (F) on the test set.

Model C-P C-R C-F E-P E-R E-F Emb-P Emb-R Emb-F

BiLSTM-CRF 0.8810 0.8628 0.8718 0.8928 0.8897 0.8913 0.4343 0.0960 0.1567
Flair-BiLSTM-CRF 0.8995 0.8843 0.8917 0.9294 0.8885 0.9084 0.8556 0.1360 0.2197
SCITE 0.8999 0.8998 0.8998 0.9272 0.9021 0.9144 0.8489 0.1920 0.2947

Table 5

Ablation analysis of our proposed model SCITE. ‘‘All” denotes the complete SCITE
model, i.e., the Flair + CCNN-BiLSTM-MHSA-CRF model, while ‘‘�” denotes removing
the component from the SCITE.

Model Setting F

SCITE All 0.8455

Flair-BiLSTM-MHSA-CRF -CCNN 0.8438
Flair-BiLSTM-CRF -CCNN -MHSA 0.8382
BiLSTM-MHSA-CRF -Flair -CCNN 0.8137
BiLSTM-CRF -Flair -CCNN -MHSA 0.7884

Fig. 10. F1-score on the test set, in terms of the size of the training dataset.

Fig. 9. Confusion matrix of our SCITE model and other baseline models for tag errors. x-axis: true tags; y-axis: predicted tags.
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words and then classify the candidate causal pairs according to
some statistical features or semantic features and grammatical fea-
tures to filter noncausal pairs. [5] used constraints based on causal-
ity trigger words to extract causal relations in English texts and
used the C4.5 decision tree to perform classification. [17] used pre-
defined templates to extract candidate causal pairs and then used
Bayesian classifier and Laplace smoothing to filter noncausal pairs.
[18] proposed a new feature called causal connectives by comput-
ing the similarity of the syntactic dependency structure of sen-
tences. They run a partial parser to extract candidate noun
phrases first and then classified the candidate causal pairs using
the restricted hidden naive Bayes learning algorithm in combina-
tion with other features, but their method cannot discriminate
the causes from the effects. [19] extracted cause-effect terms from
large-scale web text corpora using causal cues and then used a new
statistical metric-based pointwise mutual information (PMI) to
measure causal strength between any two pieces of short texts.

The above methods divide causality extraction into two sub-
tasks: candidate causal pair extraction and relation classification
(filtering noncausal pairs). The results of candidate causal pair
extraction may affect the performance of relation classification
and generate cascading errors. These methods often require con-
siderable human effort and time in feature engineering, relying
heavily on the manual selection of textual features, and the
hand-selected features are relatively too simple to capture the
in-depth semantic information of the context.

5.3. Methods based on deep learning techniques

Due to the powerful representation learning capabilities of deep
neural networks that can effectively capture implicit andambiguous
causal relations, the adoptionof deep learning techniques for causal-
ity extraction has become a popular choice for researchers in recent
years. [21] usedCNN to classify causal relations in the text. [22] used
multicolumn CNN with the background knowledge extracted from
noisy texts to classify such commonsense causalities as ‘‘smoke
cigarettes” ! ‘‘die or lung cancer”. Similarly, [24] proposed a
knowledge-oriented CNN that incorporates prior knowledge from
lexical knowledge bases for causal relation classification. [23] pro-
posed an LSTM-based model only fed with word embeddings for
the task of causality classification. In addition to classifying causality
froma common sense reasoning standpoint, [25] and [26] also iden-
tified the linguistic expressions of causality in the text from a lin-
guistic point of view through deep LSTM-based models.

The main differences between our proposed method and the
above methods based on deep learning techniques can be summa-
rized as follows:

	 Our method aims to automatically extract such common sense
causal triplets as c in the text (Fig. 1), not only to classify causal
relations or to identify the linguistic expressions of causality.
	 Our method can easily handle multiple causal triplets and
embedded causality in the same sentence (Section 2.1 and Sec-
tion 2.2) without having to divide the sentences into subsen-
tences that contain only one instance of causality and thus
generate cascading errors as in [25].

6. Conclusion

In this paper, we formulate causality extraction as a sequence
tagging problem and deliver a self-attentive BiLSTM-CRF-based
solution for the causality extraction. In particular, we propose
SCITE to extract causality in natural language text based on our
causality tagging scheme. To alleviate the problem of data insuffi-
ciency, we transfer the Flair embeddings trained from a large
corpus into our task. In addition, we introduce the multihead
self-attention mechanism to learn the dependencies between
cause and effect. Experimental results demonstrate the effective-
ness of our proposed method. However, the performance of SCITE
is still limited to some extent by the insufficiency of high-quality
annotated data (Section 4.4).

In future work, we will attempt to solve this problem as
follows:

1. Develop annotated datasets from multiple sources based on
existing datasets and our causality tagging scheme.

2. Combine our method with distant supervision [55] and rein-
forcement learning [56] to achieve better performance without
having to build a high-quality annotated corpus for causality
extraction.
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